Large-Scale Screening of Intact Tomato Seeds for Viability Using Near Infrared Reflectance Spectroscopy (NIRS)
نویسندگان
چکیده
Near infrared reflectance spectroscopy (NIRS), a non-destructive and rapid analytical method, was used to examine the possibility of replacing a method for the large-scale screening of tomato seed viability. A total of 368 tomato seed samples were used for development and validation of an NIRS calibration model. The accelerating aging method (98 ± 2% R.H., 40 ◦C) was employed for preparation of a calibration set (n = 268) and a validation set (n = 100) with wider seed viability. Among the tomato NIRS calibration models tested, the modified partial least square (MPLS) regression produced the best equation model. Specifically, this model produced a higher RSQ (0.9446) and lower SEC (6.5012) during calibration and a higher 1-VR (0.9194) and lower SECV (7.8264) upon cross-validation compared to the other regression methods (PLS, PCR) tested in this study. Additionally, the SD/SECV was 3.53, which was greater than the criterion point of 3. External validation of this NIRS equation revealed a significant correlation between reference values and NIRS-estimated values based on the coefficient of determination (R2), the standard error of prediction (SEP (C)), and the ratio of performance to deviation (RPD = SD/SEP (C)), which were 0.94, 6.57, and 3.96, respectively. The external validation demonstrated that this model had predictive accuracy in tomato, indicating that it has the potential to replace the germination test.
منابع مشابه
Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملEstimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملPotential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملImproved Estimation of Oil, Linoleic and Oleic Acid and Seed Hull Fractions in Safflower by NIRS
Near-infrared reflectance spectroscopy (NIRS) of intact seeds allows the non-destructive estimation of seed quality parameters which is highly desirable in plant breeding. Together with yield, oil content and quality, a main aim in safflower (Carthamus tinctorius L.) breeding is the selection of genotypes with a low percentage of empty seeds even under cooler climates. We developed NIRS calibra...
متن کامل